近日,高新司组织专家在江苏扬中对“十二五”国家科技支撑计划“面向机床、船舶与电气的装备智能制造的工艺软件与知识库研发”项目进行验收。

本网讯
继今年3月,由湖南科技大学作为课题承担单位牵头申报的,该校“湘江学者计划”特聘教授、博士生导师邓朝晖教授主持的2014年度国家高技术研究发展计划
课题“典型机床绿色生产工艺技术评估及应用支持系统研究”获正式立项资助后,今年8月,据中国机械工业联合会文件,2014年征集的2015年度先进制造领域科技支撑计划项目已由科技部完成入库评审,进入项目建议阶段。
其中,由科技部高新司委托机械工业联合会组织了2015年科技支撑计划“面向机床、船舶与电气的装备智能制造的工艺软件与知识库研发”等4个项目的项目建议及预算的编制工作。由湖南海捷精密工业有限公司牵头承担,联合湖南科技大学、湖南大学、山东博特精工股份有限公司和湖北威风汽车配件股份有限公司等单位,申报的“机床主轴和船舶凸轮轴智能制造的工艺软件和知识库研发”课题成功入库,该课题其中在该项目的12个申报课题中,最终择优遴选了3个入库课题。

美高梅官方网站 1

“十三五”先进制造专项规划出台 仪器仪表制造业获重点扶持

项目针对机床、船舶、电气等领域的装备加工过程复杂多变、工艺参数优化和决策困难等方面的问题,研究了工艺信息、工艺经验知识规范化描述、工艺综合数据库和知识库系统模型,建立了机床主轴和船舶凸轮轴、重型高速柴油发动机、成套电气等典型装备制造的工艺综合数据库和知识库,突破了工艺知识推理、工艺参数优化、工艺方案决策等一批关键技术,研发了具有自主知识产权的典型零部件制造工艺软件,并进行了示范应用,取得了较好的经济和社会效益。

美高梅官方网站,科技部对“机床主轴和船舶凸轮轴智能制造的工艺软件和知识库研发”课题核定的课题经费1700万元,其中国拨经费700万元。课题成果将以软件产品形式,在机床、船舶等行业形成应用,以提高我国制造业和装备的自动化与智能化水平,为实现我国从制造大国向制造强国转变奠定技术基础。

1
引言工艺设计作为产品设计与制造的中问环节,在企业生产制造过程中起着极其重要的作用。最开始人们对CAPP的研究侧重于工艺设计的自动化,后来又侧重于计算机对工艺设计的辅助作用,现在人们越来越认识到工艺知识在工艺设计中的重要性。CAPP系统不但能利用工艺人员的经验知识和各种工艺数据进行科学的决策、自动生成工艺规程,还能自动计算工序尺寸、绘制工序图、选择切削参数和对工艺设计结果进行优化等,从而设计出一致性良好的、高质量的工艺规程。国内的制造业企业,通过学习国外先进的制造工艺和装备技术,已积累了相当丰富的工艺设计知识和大量的制造资源数据,但这些宝贵的工艺知识和制造资源数据,绝大多数都还停留在部分设计人员的脑子里或零散的纸质文件中,不利于企业快速查找和重用这些宝贵的工艺设计知识和制造资源信息,制约了我国制造业的发展速度和管理水平的提升,故急待解决行业共性技术与工艺知识管理问题。如何利用现有、成熟的工艺知识,保证工艺方法的稳定可靠是每个工艺工作者和软件设计人员面临的主要问题,本文介绍了CAPP系统中工艺知识库的设计及管理方法。2
知识的表示方法选择系统所用的知识表示方法,不仅要考虑对知识表示的性能要求,还要考虑在制造工艺编制时涉及到的知识的特点,以提高知识处理的效率。根据专家工具的要求、产品制造工艺知识的特点以及系统编程与扩充的要求,选择面向对象表示法和产生式表示法来进行知识的描述。2.1
面向对象表示法面向对象表示法是将面向对象的思想、方法用于知识表示。所谓面向对象,是指人们在认识问题和分析问题时,可以把问题分解为一些对象以及对象之问的组合和联系。在面向对象的知识系统中,一个对象具有的知识组成了该对象的静态属性,一个对象所具有的知识处理方法和各种操作描述了该对象的智能行为。可以使用面向对象表示法表示工艺内容知识、工艺装备知识、加工设备知识、热处理知识等。2.2产生式表示法产生式表示法又称为产生式规则表示法,通常用于表示具有因果关系的知识。由于产生式规则的知识库是由一组独立的知识组成的规则库,而规则之间又是通过知识库中的事实进行通讯的,因此,改变一条规则虽会影响系统的特性,但不会影响系统的其他规则。用产生式规则表示形式所构建的知识库易于增加、修改、删除,从而可以方便地实现更新信息的功能。3
知识库设计3.1知识库的分类专家系统的推理过程需要用知识库中的知识和动态数据库中的数据对规则库中规则的条件进行匹配,这就需要大量的知识和数据。系统不但能够从数据库中获取数据,而且能够向数据库中加人专家总结的新的知识,新的规则,更新数据库中陈旧过时的数据。根据专家系统中知识的形态,可以将知识划分为:关于对象的事实知识即狭义的知识,关于方法的知识即通常所指的规则。上述2种形态的知识分别对应存入知识库和规则知识库。知识库分类结构如图1所示。

2017年5月8日

通过项目的实施,将促进智能制造系统相关软件产品及服务体系的完善,逐渐形成中国自主可控的智能制造软件生态体系,为我国重塑制造业生产模式、产业形态和价值链,促进制造业转型升级提供了技术支撑。

责任编辑:阅微

图1 工艺知识库的结构

5月2日,科技部发布《关于印发“十三五”先进制造技术领域科技创新专项规划的通知》,仪器仪表制造业获重点扶持。

工艺流程库存储产品加工工艺流程图上工艺节点(即工序)处理顺序的逻辑关系。工艺规则库存储关于工艺处理的若干规则,例如:工艺生成时提取信息的一系列规则和制造序号生成规则等。这些规则是在系统详细设计时经过分析和综合设计出的一套完善的规则,可以处理系统运行时可能出现的各种情况。工艺内容知识库中存储工艺节点对象的属性知识,这些知识包括工艺节点的类型、输入项和专家提示信息,以及等同工艺节点、上级工艺节点、工艺的具体内容(即工步内容)等。工艺装备知识库与加工设备知识库分别存储加工工艺中所用到的工艺装备与加工设备的相关知识和信息。热处理知识库存储加工工艺热处理相关知识。另外还有标准件知识库等其他知识库分别存储相关知识。这些知识是工艺专家的经验总结,在系统设计时提供修改接口,可方便地加入专家的新知识、新规则,以及更新或删除陈旧过时的数据等。知识库需要一定的存储载体。专家系统的知识库是将关系型数据库作为其存储载体。3.2规则库的设计规则库的功能是汇总工艺设计规则,包括典型几何要素的加工方法、机床选择规则、尺寸精度选择规则、工艺排序逻辑判断原则以及相关的加工类型。数据库用于存放加工数据,包括加工余量、刀(模)具参数、切削用量参数、辅具代码、量具代码、机床参数和台数、工装代码、工时数等。这些数据的来源可由用户根据本企业的产品特征和制造资源的环境新建,也可建立在已有数据库的基础上。由于工艺过程设计本身是一个多参数、多约束、依赖于经验的、复杂的思维创作过程,其知识结构十分复杂,这里提出用多层次、多种表达模式的、有机集合的知识表达方法。即把上述工艺规则和加工数据知识收集起来,采用分层方式排列。第1层是零件族特征获取;第2层是加工方法、工艺选择等工艺知识库;第3层是机床选择、加工类型、工装夹具的选择等制造资源库;第4层是加工数据、加工工时等工艺数据库。对低层知识用数据库表达方法;对高层知识如加工顺序、工装设备、切削用量、工序设计等用框架式、产生式、逻辑式、过程式集成表达模式。工艺推理不宜采用目标驱动模式(反向推理策略),而适宜采用数据驱动模式(正向推理策略),即从零件的毛坯开始(此时工艺规程为空),采用数据驱动策略方式,引入启发性知识进行多层次搜索分级推理。这样形成的知识库不仅具有逻辑原则,而且具有创成功能,即有从低层知识推理出高层知识的功能。工艺决策模块知识表达形式主要采用产生式规则。产生式规则是根据一组由条件和结论组成的语句来判断,并按顺序、相应条件自上而下组织的规则,这种规则比较符合专家的思维方式。它的一般形式为:IF(条件1)AND(条件2)
AND(条件N)存在THEN(结论)成立。为了解决工艺规则的冲突性、冗余性和表达不足,通过命题逻辑的表达来弥补。例如:在搜索工艺规则时,根据产生式的条件有高频淬火工序存在,其前面的工序排列中必须有与调质有关的工序存在,因此高频淬火工序和调质有关的工序问存在着一个””‘的关系。4
知识库管理4.1知识管理拥有知识是专家系统有别于其他计算机软件系统的重要标示,而知识的质量和数量又是决定专家系统性能的关键因素。知识管理主要包括知识获取、知识查询、知识修改、知识的一致性维护等主要内容。专家系统中,通过友好的人机交互界面,用面向对象的方法构建了专家系统知识管理模块,将工艺专家的经验转化为系统可以理解的知识和规则,并同知识库联系在一起,方便地实现了知识和规则的获取、知识的查询、知识的修改、知识的维护等工作。在人机界面的引导下,用户不需要了解产生式规则所要求的语法,就可以方便地添加、浏览、修改和删除知识库中的知识和规则,使知识库不断得到充实和完善,从而提高软件的灵活性和实用性。4.2知识获取知识获取的基本任务是为专家系统获取知识,建立起健全、完善、有效的规则库,以满足求解领域问题的需要。知识库获取提供了对知识库中的内容不断扩充的途径,按照从专家或相关资料中获取的知识,经一定的整理后可通过知识获取模块输入到知识库中去。知识获取模块在获得知识的过程中负责对知识的完整性和一致性进行检测。知识获取模块的内部是由对若干规则类对象或知识类对象的操作来实现知识的整理、完整性和一致性的检测以及将知识输入到相应的知识库或规则库中。4.3知识的查询、修改与维护与知识获取一样,知识的查询、修改与维护同样是通过规则类对象或知识类对象进行的。知识的查询提供了对规则及规则元素的查询。对规则可按规则编号、规则名称及规则所包含的规则元素进行查询;对规则元素的查询可按规则元素名称、规则编码及自然语言描述来查询。在知识维护过程中发现不一致时,知识的查询可以对知识进行快速定位,以便于知识的修改。知识的修改在一致性检查发现错误时,提供一个修正错误规则的机制。同时,对修改后的知识进行一致性检测,修改过的知识只有检测通过后方可存人相应数据库中。知识库中的知识可能遭到意外的破坏,使知识库中的知识不一致,为保证知识库的一致性及完整性,要定期对知识进行一致性与完整性维护。5
工艺设计中的工艺知识应用方法在基于知识CAPP系统中,零部件的工艺设计是整个系统的核心。它的主要特点在于:在基于知识的工艺设计中,工艺设计人员可以查询和引用工艺知识库中的各种工艺知识,为当前的工艺设计服务。如图2所示,基于知识的工艺设计通过2种途径产生工艺文件。

近年来我国制造业总体规模已居世界第一位,综合实力不断增强,成为名副其实的制造大国。不仅突破了一批核心技术,形成了一批支撑国民经济发展的重大装备产品,更涌现出一批世界级的大企业,企业正在逐步成为技术创新主体,初步形成企业、高校、院所联动的产业创新体系。与此同时,我国制造业自身仍存在自主创新能力不强、基础能力薄弱、产品质量不高、资源利用效率偏低、制造业与互联网技术等新兴信息技术的融合程度低等问题。针对我国制造业发展对科技创新的需求,“十三五”期间,先进制造领域重点从“系统集成、智能装备、制造基础和先进制造科技创新示范工程”四个层面,围绕13个主要方向开展重点任务部署。其中,涉及仪器仪表行业发展的项目也获重点扶持。增材制造重点解决增材制造领域微观成形机理、工艺过程控制、缺陷特征分析等科学问题,突破一批重点成形工艺及装备产品,在航空航天、汽车能源、家电、生物医疗等领域开展应用,引领增材制造产业发展。形成创新设计、材料及制备、工艺及装备、核心零部件、计量、软件、标准等相对完善的技术创新与研发体系,结合重大需求开展应用示范,具备开展大规模产业化应用的技术基础。1.增材制造控形控性的科学基础探索增材制造自由成形过程的成形几何精度、成形效率、材料组织结构与性能的形成规律与关键影响因素和控制方法,为提升增材制造工艺技术和装备设计水平提供坚实的科学支撑,并为形成重大原创性增材制造新技术提供科学指引。2.基于增材制造的结构优化设计技术发展基于增材制造工艺特性,融合力学、物理与化学多种功能的结构优化设计技术,为结构整体化、轻量化、高性能化和满足声、光、电、磁、热等多功能化提供设计方法和设计软件,支撑我国高端装备的自主创新设计和跨越式技术发展。3.增材制造专用材料制备技术基于增材制造的工艺特性和应用需求,开展增材制造专用金属和非金属材料的设计与制备技术研究,最大限度地发挥增材制造技术优势,大幅度拓展增材制造的产业化应用领域。4.增材制造的核心装备设计与制造技术针对激光/电子束选区熔化、激光选区烧结、高能束金属沉积成形、光固化、激光沉积打印、微滴喷射3D打印、熔融沉积造型等已经展示重大产业化应用价值的增材制造技术,开展相关装备设计与制造技术的深入研究,占据增材制造产业价值链的高端。5.评价体系与标准建设研究制定增材制造的材料标准、设计标准、工艺标准、装备标准、检测标准、数据标准和服务标准等7个方面的标准体系,为增材制造的广泛产业化应用奠定基础,并显著增强我国增材制造技术的国际竞争力。激光制造面向航空航天、高端装备、电子制造、新能源、新材料、医疗仪器等战略新兴产业的迫切需求,实现高端产业激光制造装备的自主开发,形成激光制造的完整产业体系,促进我国激光制造技术与产业升级,大幅提升我国高端激光制造技术与装备的国际竞争力。1.激光与材料的相互作用机理面向航空航天、新能源、电子制造、医疗等领域的国家重大需求,探索激光与材料相互作用的复杂物化过程,研究超快激光制造的新原理、新方法、新应用。开展大功率激光/短波长激光与材料相互作用机理、高精高效制造方法等方面的研究,掌握激光高品质表面制造、精细制造、极端微结构、高精高效制造等制造机制与实现方法。2.激光器与核心功能部件研究激光器动力学,掌握激光晶体/光学晶体、半导体激光芯片等激光器关键功能部件的国产化。针对高端制造用激光器的迫切需求,开展工业化光纤/半导体大功率激光器制造技术、工业化超快激光器制造技术、工业化短波长激光器制造技术等方面的研究,开展激光器标准建设,实现高性能激光器及核心关键部件的国产化与产业化。3.复杂构件表面的激光精细制造技术与装备研究激光表面精细制造、激光清洗、激光抛光等核心技术,探索器件表面功能性结构的激光高质、高效制造机理与新技术,研究关键构件表面微结构成形机理与实现方法,并掌握激光光束路径规划及高速扫描、激光制造装备在线监测与补偿、激光制造过程精密在线检测等装备关键技术,开发航空航天、微电子、生物医疗等领域典型复杂构件的激光精密加工技术与装备,提升国产激光制造技术与装备的竞争力。4.大功率激光高效制造技术与装备研究特殊工况下的激光制造机理与失效行为,突破大型构件激光制造装备的设计制造技术瓶颈,攻克大型构件定位、质量在线检测等关键技术,研究激光切割、激光打孔、激光冲击强化、激光焊接以及激光复合制造等关键技术,开发面向飞机、船舶、高铁等大型构件制造中的高端激光制造技术、装备与标准。5.先进激光精密微细制造技术与装备针对航空航天、微电子、新型微小航空器件、光子集成器件等领域,突破激光衍射极限的纳米尺度制造、复杂微纳操纵及激光纳米连接、激光光束整形与协同控制等关键技术,开发硬脆材料高效精密制造、异种材料的激光高性能连接制造、极端微纳结构精细制造等技术与装备,并设计和加工若干具有重大应用前景的新型功能器件。智能机器人推动机器人产业与人工智能等新一代信息技术深度融合,突破共性关键技术,形成具有国际竞争力的机器人产品,协同标准体系建设、技术验证平台与系统建设、以及典型示范应用,支撑我国机器人技术和产业向高端发展。1.智能机器人基础前沿技术结合机器人与以人工智能为代表的新一代信息技术深度融合的国际发展趋势,开展机构/材料/驱动/传感/控制与仿生的创新技术、智能机器人感知与认知技术、智能机器人学习与智能增殖技术、人机自然交互与协作共融技术等重大基础前沿技术研究,搭建机器人技术验证平台系统,开展试验验证,取得原创性创新成果,为我国新一代智能机器人提供技术支撑。2.智能机器人共性关键技术以攻克制约我国机器人技术与产业发展的共性关键技术为目标,开展高性能机器人核心零部件(RV减速器、谐波减速器、伺服电机与驱动器、机器人控制器)、专用传感器、软件体系及多任务操作系统、功能软件、计量测试/安全与可靠性、应用工艺及系统集成等共性关键技术研究,建立机器人安全性与可靠性技术体系,机器人性能达到国际同类产品水平,解决我国机器人产业空心化问题,提升国产机器人的国际竞争力。3.新一代机器人技术与平台开展主/被动结合新型机构与驱动、模块化柔顺关节、关节变刚度弹性驱动、生物-机械界面与接口的人机相容性设计、人机安全共存、智能交互、协同作业等新一代机器人核心技术研究,研制以协作型多自由度轻型臂、协作型双臂机器人、移动操作臂等为代表的新一代互助协作型作业机器人和以上肢外骨骼、下肢外骨骼、全身外骨骼等为代表的新一代人体行为增强型机器人试验样机系统,为后续产品化奠定技术基础,实现新一代机器人技术研究与世界同步,抢占技术与产业制高点。4.机器人关键产品/平台/系统研发研发新型作业机器人、医疗/康复机器人、面向老年人/残障人士的生活辅助机器人、特殊环境服役自主作业机器人、机器人云端在线服务平台、机器人智能作业技术及系统等高端机器人关键产品/平台/系统,丰富我国机器人产品种类,完善我国机器人产品谱系建设,提升我国机器人的整体性能与智能水平,创新服务领域和商业模式,支撑我国机器人技术与产业向高端发展,彻底转变低水平重复的局面。5.系统集成与应用推进我国机器人面向制造业典型行业/重点领域、医疗/康复、助老助残/智慧家庭/社会服务、安全与救援/科学工程等行业/领域的系统集成与应用,实现我国机器人技术与产品在国家重点行业/领域高端应用和典型领域拓展应用,提高国产机器人国际竞争力,为国产机器人产业化奠定基础,加速推进我国智能机器人技术与产业的快速发展。极大规模集成电路制造装备及成套工艺针对移动通信、大数据、新能源、智能制造、物联网等重点领域大宗产品制造需求,重点围绕28-14纳米技术节点进行工艺、装备和关键材料的协同布局,形成28-14纳米装备、材料、工艺、封测等较完善的产业链,推动全产业链专项成果的规模化应用,促进产业生态的改善和技术升级,实现技术促进产业发展目标。1.光刻机及核心部件研发干式光刻机产品并实现销售;研制28纳米浸没式光刻机产品,进入大生产线考核;开展配套光学系统、双工件台等核心部件产品研发,并集成到整机;构建关键技术与产品开发平台,提升光刻机自主创新能力;建设光刻机光学系统等关键部件生产基地,具备批量生产能力。2.高端关键装备及零部件面向集成电路14-10纳米先进工艺,重点开展刻蚀、薄膜、化学机械处理、掺杂和检测等关键装备及其配套核心零部件产品研发,通过大生产线考核并进入销售。3.成套工艺及知识产权库以移动通信应用为重点,开发14纳米及相关产品工艺;以大数据应用为重点,开发立体堆叠闪存存储器工艺,开展7-5纳米关键技术研究;面向新能源、智能制造、物联网等重点领域大宗产品制造需求,开发特色产品工艺平台;取得核心知识产权并实际应用。4.关键材料面向45-28-14纳米集成电路工艺,重点研发300毫米硅片、深紫外光刻胶、抛光材料、超高纯电子气体、溅射靶材等关键材料产品,通过大生产线应用考核认证并实现规模化销售;研发相关超高纯原材料产品,构建材料应用工艺开发平台,支撑关键材料产业技术创新生态体系建设与发展。5.封装测试面向移动互联和汽车电子等重大领域需求,围绕处理器、存储器、14-10纳米工艺节点晶圆等产品开发下一代封装集成与测试新技术以及相关的关键装备和材料产品;实现可集成数模混合电路、射频、微机电系统和光电等多功能异质材料芯片的三维系统集成技术的量产应用;建成有影响力的封装集成产业共性技术研发平台,取得较完善的知识产权体系。新型电子制造关键装备面向宽禁带半导体器件、光通讯器件、MEMS器件、功率电子器件、新型显示、半导体照明、高效光伏等泛半导体产业领域的巨大市场需求,开展关键装备与工艺的研究,重点解决电子器件关键材料装备、器件制造装备等高端装备缺乏关键技术、可靠性低、工艺开发不足等问题,推动新技术研发与关键装备研发的协同发展,构建高端电子制造装备自主创新体系。1.宽禁带半导体/半导体照明等关键装备研究针对碳化硅、氮化镓等为代表的宽禁带半导体技术对关键制造装备的需求,开展大尺寸宽禁带半导体材料制备、器件制造、性能检测等关键装备与工艺研究。针对高亮度半导体照明大生产线对制造装备的需求,开展大产能材料制备、器件制造、性能检测等关键装备研发,掌握核心技术与工艺,满足大生产线要求。2.光通讯器件关键装备及工艺研究针对光通讯器件制造对装备的需求,重点围绕硅基光电子芯片工艺装备、InP基等光电子芯片工艺装备、光纤器件工艺装备、光电子器件耦合封装等关键装备等开展研究,掌握核心技术,实现产品应用,提升国内光通讯器件制造能力及工艺水平。3.MEMS器件/电力电子器件等关键装备与工艺研究针对MEMS器件、电力电子器件等领域对装备的特殊工艺需求,开展材料制备、芯片制造、特种封装、性能检测等关键装备与工艺的研发,掌握关键技术、开发特色工艺,提高国产装备的工艺适应性及可靠性。研究基于国产装备为主的成套工艺,完成对国产装备的工艺优化、可靠性验证及集成应用,打造自主产业链,提升产业竞争力。4.高效光伏电池关键装备及工艺研究针对下一代高效光伏电池技术(PERC、HIT、黑硅电池等)对关键装备及工艺的需求,开展大产能、高转换效率光伏电池制造工艺装备、自动化制造装备、核心工艺等研究,降低电池片制造成本,转换效率达到国际领先水平,实现批量销售。5.新材料、新器件关键电子装备与核心部件研究针对石墨烯、碳基电子器件、柔性显示、光互联等国际上不断出现的新材料、新器件、新工艺对半导体技术相关的装备需求,开展面向电子器件应用石墨烯材料制备装备、大面积转移装备、石墨烯电子器件制造装备、柔性显示有机膜材料制备装备、柔性显示有机器件制造及检测装备、碳基电子器件制造装备、光互联器件制备装备、高密度封装等方面的关键装备开发,满足研发或产业化需求,推动新技术研发与装备研发的协同发展。高档数控机床与基础制造装备坚持主机牵引、夯实基础、突破核心、工艺验证,聚焦航空航天和汽车两个重点服务领域,重点攻克高档数控系统和功能部件等瓶颈,完成150种以上智能、精密、高速、复合型高端制造业装备的研制和示范应用,大幅提升国家重点工程、国民经济重点领域关键制造装备国产化率,在强化高端数控装备单机智能化水平提升的基础上,逐步实现由单机示范应用向智能化制造成组成套整体解决方案的提升,扩大专项装备成果的应用成效。1.航空航天领域高档数控装备聚焦航空航天典型结构件加工需求,以提高加工效率和质量为目标,突破关键工艺和编程等核心技术;开展高档五轴数控机床与关键成形装备等主机的应用验证与示范,推动高档数控系统和以摆角铣头为代表的关键功能部件实现批量化应用。2.汽车制造领域高档数控装备重点研究数控机床的可靠性快速试验技术与制造保障技术、数控系统的可靠性第三方测试及可靠性增长技术,突破数控机床可靠性MTBF>2000小时的技术瓶颈,通过示范应用与工艺验证,大幅提升国产数控机床的组线能力。加强成组成套工艺集成研究,为汽车关键零部件制造提供成套解决方案,实现国产高档数控机床在汽车发动机关键零部件高效柔性加工与批量化制造中的成组成套应用。智能装备与先进工艺重点解决高端装备产品质量较差、档次不高,缺乏核心工艺,智能化程度不足,可靠性及精度保持性难题,研制一批代表性智能加工装备、先进工艺装备和重大智能成套装备,支撑我国高端装备向高精尖和智能化互联方向发展,引领装备的智能化升级。1.智能机床重点研究新一代智能机床的技术特征、总体结构、核心模块和关键技术,攻克智能主轴/智能伺服进给/智能终端等智能单元、基于模型的复杂曲面直接插补、机床通用通信接口协议规范、加工状态自感知/自学习/自适应/自优化、虚拟机床及虚拟加工、基于工业互联网和加工过程大数据的监控及远程服务、全生命周期可靠性评估与增长等核心关键技术,研制出具有国际一流技术水平的新一代智能数控系统和智能机床,并在重点领域开展应用示范。2.新型材料成形及加工装备重点攻克石墨烯/类石墨烯薄膜大幅面制造过程晶态生长监测及控制、石墨烯/类石墨烯薄膜大面积转移在线应力监测与控制技术,研制出大幅面石墨烯/类石墨烯制造成套装备;重点突破复合材料制造工艺建模与仿真、耐高温陶瓷基复合材料低成本制造工艺及装备、复合材料组合结构(纤维复合材料、蜂窝材料和增材制造)制造新方法等关键技术,为新型材料成形和加工提供新工艺和新技术。3.复杂大型构件高效加工技术及装备重点攻克大型异种材料结构件高效低残余应力焊接、大规格球管类构件整体成形技术,研制出大型轻量化结构低应力精确成形制造工艺与装备;重点攻克复合材料混杂构件低成本复合成形、复合材料构件低损伤加工工艺与损伤检测等关键技术,研制出复合材料/结构一体化设计与精确成形协同制造装备。4.复合能场加工工艺及装备重点研究复合能场耦合机理、复合能场对材料的协同作用机制,攻克复合能场加工质量在线监测、多工艺要素协同控制等关键技术,形成激光-电弧-磁场复合加工、异种材料复合能场加工以及铝锂合金等新一代轻质合金多能场复合加工工艺,研制出多功能小型化复合能场加工装备、多自由度大型结构件激光复合能场加工装备、以及极端环境下现场制造工艺及装备。5.精密与超精密加工工艺及装备重点突破金属超硬材料、超低密度材料、高分子聚合物、高精度光学元件、微机械及医疗生物零件等精密超精密加工关键技术,探索研究超精密加工与微成形的物化机理、微观力学行为、表面形貌演变规律、精度和性能映射等新原理,研发极端制造环境下高精度大尺寸加工测量一体化、微纳结构与功能表面的原位测量、超高精度平/曲面、微纳结构功能表面加工工艺装备、大功率超声波应用技术等,并在典型行业示范应用。6.重大成套机械装备重点研究开发重大成套机械装备的数字化、网络化、智能化关键技术,研制智能化大型工程机械、数字化重型矿山成套设备、大型石化成套设备、智能化港口/海工作业机械和智能化农业机械等一批重大装备,实现系统集成,推进示范应用。制造基础技术与关键部件围绕制造基础技术与关键部件,开展基础技术与前沿技术研究,突破关键技术与共性技术,建立健全基础数据库、工业试验验证平台和安全保障技术,完善技术标准体系,为逐步解决国产装备“空心化”提供技术支撑,大幅度提高为重点领域和重大成套装备自主配套能力。1.基础件围绕高速精密重载轴承开展轴承服役性能演变规律与失效机理等基础理论、材料对性能影响规律和失效机理等研究,掌握高速、精密、重载轴承设计理论、寿命理论及试验方法,动态性能试验技术与方法,掌握高铁轴箱轴承、风力发电机组主轴与齿轮箱轴承、机器人和机床精密轴承、特大型装备静压轴承等设计、试验和批量化制造核心技术,开展典型应用示范。围绕高参数齿轮及传动装置开展高参数齿轮传动啮合失效机理、特殊条件下齿轮副基本工作理论、研究,研究高速重载齿轮传动、轻合金齿轮、高性能蜗杆传动及新型机构,基准级别齿轮渐开线样板设计与超精密制造和计量,突破高参数齿轮传动和精密减速器设计、制造和检测共性关键技术,形成标准及技术规范,实现高参数齿轮及传动装置在民用航空装备、工程机械、大型海洋装备、高速列车、海上风电、机器人等装备的示范应用。围绕高端液压件与密封件开展新型高功率重量比和高能量密度液压件的设计方法研究,高参数液压阀、泵等新结构和新方法研究。研究密封可靠性设计、延寿、运行试验技术,开发高性能检测、可靠性评估和测试装备,建立性能评价体系与标准。开发高压力等级多路阀和液压泵、大规格柱塞泵与比例流量阀、高效率静液传动元件与系统、高参数密封件、液压动力总成系统等,实现在工程机械与农业机械、重型机械、航空航天、海洋工程装备等示范应用。2.基础制造工艺研究高活性金属与铸型界面反应机制和成形方法、铸造全流程精确控制、铸造过程仿真与在线检测等关键技术,掌握钛合金、高温合金铸件精密铸造技术、铸锻件近净成形与精准成形工艺,开展各类材料成形过程动态仿真参数优化技术研发应用,实现典型产品应用示范。研究零件可控清洁热处理工艺、真空等温淬火热处理工艺等关键技术,开发清洁热处理装备,完善热处理工艺数据库。开发高温耐蚀涂层技术、润滑耐磨抗氧化表面工艺材料、工艺及表面处理装备。研究高速干切基本机理和新型干切机床结构,工艺参数优化及基础数据库;研究微量润滑作用机理和测试选用技术,低温微量润滑集成制造技术;环保清洁切削液配置技术。3.工业性验证平台与基础数据库建立精密齿轮及传动装置、高压大流量液压元件、高参数密封件、高速重载轴承等关键基础件性能及可靠性试验平台,工业传感器、智能仪器仪表性能及可靠性测试平台,对相关的基础技术、关键部件与产品进行试验验证,完善技术标准体系。研究先进制造工艺方法、工艺基础数据库,研究并整合国内外制造工艺相关数据资源,建立健全制造基础技术数据库、基础制造工艺资源环境属性数据库等。研发基础数据采集工具和知识库管理系统和标准,开发面向基础工艺和典型产品全生命周期环境影响评价工具。4.制造过程安全保障关键技术研究关键部件故障响应安全机制、功能安全定量计算数学模型和定性评价体系等功能安全设计与评估验证技术;研究物理安全、功能安全、网络安全一体化融合的方法理论、制造系统安全一体化管控等安全一体化融合技术;研究安全威胁和攻击机理分析与建模、实时攻击隔离与抑制等工业互联网安全技术;故障预测与健康管理等测控产品安全可用关键技术研究;开展功能、网络安全工业化试验验证,典型工业协议安全性分析验证,工业互联网安全漏洞库等研究。工业传感器针对工业互联、智能制造的高端需求,顺应传感器微型化、集成化、智能化发展趋势,形成一批高端传感器和仪器仪表产品,支撑我国智能制造发展,解决微纳传感器硅基兼容制造、封装、可靠性、集成化等核心共性技术,引领未来发展。1.工业互联网用微纳传感器研究无源无线多参数监测传感器,高能量密度振动能量收集器等前沿技术。研发传感器与电路协同设计技术及设计工具,传感器与电路单片集成工艺技术,硅基功能薄膜兼容制造等关键共性技术。开发单片集成传感器,阵列传感器,多功能传感器,低功耗传感器,无线集成传感器等产品。2.离散制造业用微纳传感器研究柔性衬底传感器,芯片级原子效应传感器等前沿技术,研发数字全场激光超声检测技术,高精度二维三维光栅测试等关键共性技术。研发运动部件温度、应变、振动传感器,转速传感器,微型继电器,微型电场传感器,多维位移同步测量传感器,微型高精度姿态测量单元等产品。3.流程工业用微纳传感器研究高精度谐振式压力传感器,微型声矢量传感器等前沿技术。研发传感器芯片与封装材料特性测试技术及其数据库,微传感器可靠性及其测试等关键共性技术。研发高温压力传感器、风速风向传感器、红外高温传感器、工业现场气体检测传感器等产品。4.智能制造用仪器仪表研究智能仪器仪表可靠性建模、设计与仿真,参数标定与校准、非线性补偿方法等动态测试与性能评估,关键部件芯片化等前沿技术;研发复杂工业测量仪表在线标定,高端智能测量仪表设计、精确自动补偿、生产工艺、装配等,在线分析仪器小型化关键部件、微弱信号精密检测等共性关键技术;研发高精度压力/质量/流量/物位仪表,压力/质量流量仪表在线批量化标定装置,小型化在线分析仪、感知/控制/驱动一体化控制器等产品。5.特种专用仪器仪表研究力热平衡结构设计、多传感器三维纳米定位等纳米三坐标测量,工件姿态和运动参数测量、空间坐标测量、大型零部件尺寸和形位误差测量、激光跟踪等大型装备制造智能化测量等前沿技术,研发工业现场级虚拟测量、工业设施现场故障诊断、特种执行机构和控制阀设计、制造和仿真等共性关键技术,研制激光跟踪测量仪器、现场级虚拟测量仪表、复杂机械运行故障检测等工业现场专用诊断仪器、特种执行机构和控制阀等。智能工厂适应工厂智能化的发展趋势,重点研发智能制造标准化共性关键技术,实现智能工厂共性关键技术研发、技术的工程化和产业化。提升我国工业自动化行业的整体创新水平和自主装备能力,满足国家科技创新、产业升级和转型的重大战略需求。1.工业互联网技术与系统针对物理信息系统中信息与物理交叉融合造成的复杂性系统问题,建立工业互联网复杂系统模型,攻克以智能工厂为对象的全网互联技术,给出工业互联网复杂系统的实现能力、性能分析与评价方法。重点研究工业互联网一体化架构、工业互联网的泛在感知网络互联和实时控制技术、多源异构网络互联与语义化互操作技术、动态自组织软件定义的工业控制网络技术、工业互联网验证测试平台。攻克大规模、异构、高实时、高安全、可重构工业互联网共性关键技术,实现工业互联网系统安全可靠应用,建立工业互联网与智能工厂测试验证平台。2.智能控制器与系统以新一代信息技术为基础,研制新型、高端、可信智能控制器,提升工厂制造过程和制造装备的自有处理能力和智能水平。重点研究智能装备CPS型控制器与关键技术、基于移动互联的智能产线控制管理器、高可信多重冗余控制系统与关键技术、新一代SCADA系统与关键技术、工业组态和工业监控等工业软件、精密系统装配过程数据采集与控制装置。攻克云端服务、高实时任务、高可信控制共性关键技术,实现实时仿真、全分布式控制、多种控制器无缝集成。3.制造过程的系统设计、控制与优化针对智能工厂的工程化基础方法和实施手段,研究开发面向CPS的工程工具和实时在线优化控制工具以及先进的模型库知识库,提升智能工厂的工程应用目标。重点研究生产过程与设备的建模仿真与优化控制技术、先进制造智能服务体系与全流程智能优化技术、全过程的数据实时获取分析与信息整合技术、工业互联网语义化编程技术与组态工具、分子级表征建模工具与在线实时优化控制系统设计平台、模块化协同设计工具与实时控制系统设计平台。攻克分子级表征与建模、多层域多尺度建模、系统设计、基于知识和数据的仿真模拟与实时优化、在线服务与全流程优化技术,实现仿真设计与控制优化系统工具与平台。4.CPS制造执行系统与运营管理针对智能工厂的生产要素、能效管理、智能决策和生产服务关键技术,研究基于“互联网+智能工厂”的运营管理平台,实现智能工厂平台化方法的建立和实施。重点研究基于云平台的CPS制造执行系统、制造过程能效仿真、监测与管控技术、生产要素的状态监测诊断与健康管理技术、企业级辅助决策智能化与可视化平台。攻克服务总线、动态配置、能效模型、生产要素模型、可视化呈现、智能辅助决策关键技术,实现智能工厂的运营管理。5.智能工厂的可重构技术及原型平台针对智能工厂批量化定制需求,研究工控系统可重构技术,研制智能工厂原型平台,实现产线装备、制造过程和云平台服务资源可重构能力。重点研究装备控制器可重构技术、产线可重构技术、工业互联网与云平台可重构技术、智能工厂可重构原型平台。攻克装备控制系统可重构技术、产线装备可重构技术、工业互联网可重构技术、云平台服务资源可重构技术,实现集成可重构技术的智能工厂原型平台。网络协同制造以推进互联网与制造业、服务与制造融合发展为主线,以重塑制造业技术体系、生产模式、产业形态和价值链以及促进制造业转型升级为目标,探索一批引领发展的制造与服务新模式,突破一批网络协同制造理论、关键技术与标准,研发一批“互联网+”协同制造工业软件,创建一批“互联网+”制造服务平台。1.网络协同制造模式与理论围绕推进互联网与制造业、服务业与制造业融合发展以及打造智慧企业的创新需求,探索云制造等网络协同制造新模式;研究智慧空间与工业大数据、服务型制造与制造服务融合等前沿理论;研发与构建产品全生命周期制造服务融合、多模式智能供应链、服务价值链协同、多学科支撑的工业大数据精准分析、在线运维与预测运营等核心模型与关键技术。为重塑制造业技术体系、产业形态和价值链提供理论支撑。2.“互联网+”协同制造工业软件围绕基于互联网的协同制造服务新模式,面向创新设计、企业经营与资源管理、产品全生命周期制造服务以及工业云、工业大数据、工业互联网等平台系统的构建,研发复杂产品全数字化优化和仿真、产品全生命周期/服务生命周期管理、资源管理与智能供应链协同、基于OT的智能服务、工业大数据分析等平台系统与软件,形成“互联网+”协同制造工业软件系统,支撑网络协同制造创新发展。3.基于“互联网+”的创新设计探索支撑制造业要素资源共享互联及社会力量参与互动的研发设计新模式;攻克“互联网+”环境下设计资源共享、研发设计价值链协同以及众创空间构建新技术;研发支持云制造的设计资源共享与协同创新平台、典型行业众创服务平台以及制造业产品众包设计服务平台。推进制造业从“企业创新”到“众创众包”的发展转变。4.资源管理与智能供应链攻克“互联网+”环境下基于工业云与工业大数据的企业经营管理及资源集成共享技术、智能供应链协同与精准服务技术;研发制造核心企业和第三方服务商主导的多模式制造企业经营管理与资源集成共享云平台、智能供应链管理集成平台与产业价值链协同云平台;构建企业制造资源协同空间。推动从“企业运行”向价值链“协同运营”转变。5.产品全生命周期制造服务攻克制造服务价值链重构、产品服务生命周期管理、在线运维与预测运营等关键技术;研发产品服务生命周期集成管理平台、制造服务价值链协同云服务平台以及高端装备智能预测与精准服务云平台;打造制造与服务融合的服务价值链协同新体系。支撑制造业向“制造+服务”转型升级。6.工业大数据驱动的网络协同制造平台攻克产品数据链、资源数据链、供应数据链、制造数据链、服务数据链及其无缝集成、工业大数据驱动的企业智能决策与预测预警等关键技术;研发基于工业大数据的企业业务管控与决策分析、企业智慧数据空间构建等技术系统;打造云制造服务平台、工业大数据驱动的网络协同制造平台等;构建企业智慧数据空间,开展平台典型应用。绿色制造重点面向我国制造业发展中高能耗、高污染的问题,以提高资源能源效率和降低环境负荷为主线,以绿色产品、绿色工厂为目标,掌握生态设计理论与工具、绿色制造方法与工艺、试验验证平台、绿色标准与规范等基础共性技术,推广基础制造工艺绿色化、流程工业绿色化技术,提升通用设备产品能效、工业废弃物回收再制造与再资源化等生态效率水平。1.基于绿色理念的减量化设计与创新设计通过创新研发,突破新材料应用及改性设计、节能降噪设计、个性化定制设计、可拆解与回收设计等生态设计关键技术。掌握全生命周期高效绿色循环再利用基础理论及关键技术,实现战略性资源高效绿色循环再利用。研究典型绿色产品新原理、新结构设计及应用关键技术,开发一批绿色制造前沿技术、核心技术与装备,开发推广绿色产品,引导绿色生产。2.绿色加工工艺与装备重点研究基础工艺绿色化技术、流程工业绿色工艺技术、量大面广的典型通用设备产品节能、减排、降耗技术。实施重点行业系统改造的示范应用。开发高效清洁基础制造工艺及装备、无害化表面处理工艺技术、少无切削液清洁加工工艺与设备、钢铁短流程工艺、有色金属清洁冶炼工艺。开展制造工艺创新和集成应用,加快实现重点行业制造系统和装备的绿色升级。3.制造系统能效优化关键技术围绕制造系统能效优化与提升和终端用能产品节能,突破产品能效及其集成优化匹配技术,制造系统机群综合能效模型与智能分析技术、机群综合能效的智能协同优化控制技术;掌握系统能效分析与获取、能效评价、监控与优化管理、设备系统能效提升、工艺系统多目标决策优化、工件比能效率提升等系列关键技术;在规模以上企业开展车间、工厂以及产业集群的能耗定额管理和高能效优化运行,推行制造系统能效评价和优化应用。4.资源循环利用核心技术突破典型机械装备及零部件智能再制造和流程行业在役再制造关键技术,推动再制造成套技术与装备水平上台阶及产业模式创新,培育形成从旧件到再制造产品的循环产业链,提高再制造效率及其产业附加值。掌握大宗材料高效、精细化、高附加值资源化技术和装备,推进资源再生利用产业规范化、规模化发展,逐步扩大产业规模,提升资源化效率及其产业附加值,培育形成新的经济增长点。5.行业/区域绿色工厂、绿色产品集成应用示范创新绿色制造产业新模式,系统研究绿色制造的基础理论、运行模式、建模仿真技术,绿色产品、绿色工厂标准体系、评价标准。在汽车、机床、钢铁、冶金等行业/区域的开展全产业链绿色制造技术、绿色工厂、绿色产品的集成应用示范。先进制造科技创新示范工程围绕“智能化、服务化、绿色化”发展的大趋势,积极推进智能一代机械产品创新示范、制造业信息化创新示范和绿色制造集成应用创新示范等工作,培育示范行业、示范省市、示范企业,大力推动和引领信息技术与制造技术深度融合发展,支撑制造业向高端制造和价值链高端转型升级。1.智能化装备/生产线集成技术开发与应用示范重点面向工程机械、纺织机械、轻工机械、流程工业机械等行业重点骨干企业,研究智能化装备/生产线关键技术及标准规范,研发智能化制造装备,构建智能化生产线,开展应用示范,提升装备/生产线整体使役性能。2.智能工厂集成技术开发与应用示范面向重大装备制造、柔性化定制生产、流程生产行业重点骨干企业,研究智能工厂集成应用技术和相关标准规范,研发智能工厂模型,构建智能工厂运行管控平台及系统,开展应用示范,支撑企业敏捷化、柔性化、定制化、智能化和高效、绿色生产。3.网络化制造服务关键技术研究与应用示范面向大型复杂装备、汽车、家电等行业,围绕产品全生命周期和服务价值链,研究服务型制造、云制造、互联制造、云服务等制造服务关键技术,构建网络化制造服务平台,开展应用示范,引领制造业向服务化和价值链高端转型。4.智慧企业集成技术开发与应用示范面向生产行业龙头企业,研究基于互联网的协同制造新模式和智慧企业模型,构建工业大数据驱动的网络协同制造平台,提高智慧企业综合管理运营水平,开展应用示范,提升企业核心业务能力和参与全球竞争能力。5.重点行业/典型区域先进制造综合应用示范面向重点行业和制造业相对密集的省市地方支柱及特色产业,组织实施“智能一代机械产品创新示范”、“制造业信息化创新示范”和“绿色制造集成应用创新示范”,开展智能化装备/生产线、智能工厂、网络化制造服务、智慧企业、绿色制造等综合应用示范,建设技术服务体系,培育示范企业,带动智能化、绿色化、服务化推广应用。6.先进制造技术服务体系与支撑环境建设面向重点行业和典型区域,政府引导与市场机制相结合,建设技术服务平台、机构,完善人才培训、咨询服务、应用示范体系建设,形成先进制造技术服务体系与支撑环境,为制造业转型升级和创新发展营造良好的支撑环境。

图2 2种零件工艺设计流程

科技部

5.1零件的毛坯图设计即通过快速查询引用毛坯参数库中的毛坯参数,在工序简图参数化设计环境(AutoCAD)中参数化生成毛坯图和毛坯工序简图并对生成的毛坯图/I序简图进行编辑,直至满足新零件毛坯图工艺参数要求。在毛坯图的参数化设计和编辑过程中,工艺设计人员可以快速查询和引用毛坯成型工艺知识库中的工艺知识,以辅助毛坯图/工序简图的参数化编辑。零件毛坯图设计最终产生毛坯图、工序简图等工艺文件,审签通过后,归档并发放到相关制造部门。对于不符合要求的毛坯图、工序简图等工艺文件打回到编辑环境重新编辑,直至审签合格。5.2零件的工艺设计在零件工艺设计过程中,对于全新零件工艺设计,企业可根据自身的特点,利用本系统提供的工艺模板编辑工具,自定义出通用的工艺设计模板。在工艺设计时,工艺人员可引用工艺模板后进行工艺设计。这样有利于促进企业提高工艺文件的规范性和统一性。对于典型零件的工艺设计,可从典型工艺知识库中快速查询并引用适用的典型工艺;对于形状或工艺属性具有标准性的零件工艺设计时,工艺人员可根据相似性推理规则在系统中通过成组编码查询相似零件引用典型工艺。在典型工艺引用后再进行编辑,即派生出了新零件的工艺文件。6
结论工艺知识是工艺设计的基础,对工艺知识的管理有利于企业工艺知识和经验的积累和工艺优化。在系统的应用过程中,知识库可以根据企业的实际情况修改、增删,提高了CAPP系统对不同制造环境的适应能力(即柔性)。随着技术的进步、设备的更新和知识的积累,不断丰富和修改知识库,从而不断完善系统的性能。(end)

相关文章